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ABSTRACT– This work describes recent advances on the effects of subgrain boundaries on 
elevated-temperature plasticity.  Particular attention is devoted to recent developments 
regarding internal back-stresses.  This will include discussions of recent convergent beam 
electron diffraction (CBED) experiments on metals to evaluate internal stresses in 
association with dislocation heterogeneities. 
 
INTRODUCTION:  Over extended elevated temperature (and strain-rate) ranges, pure 
metals and M-type alloys exhibit 5-power-law creep (Kassner and Perez-Prado [2000]). This 
paper reviews the established experimental trends that relate subgrain boundaries to 5-
power-law creep behavior, and current interpretations of these trends and, most importantly, 
to illustrate that recent experiments appear to mandate a new understanding of the influence 
of subgrain boundaries on 5-power-law creep behavior.  
 
DISCUSSION:  Above about 0.6 Tm, metals and M-type alloys undergo (creep) plasticity 
that can be quantitatively described by: 
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where A is a constant, Qsd is the activation energy for lattice self-diffusion.  A detailed 
mechanism rationalizing the details by which dislocation climb (climb-rate is controlled by 
Qsd) is important has not been clearly established.  The proposed mechanisms can be divided 
into two broad “categories”.  The first group suggests that subgrains or the low-
misorientation (1-2°) interfaces that evolve during creep plasticity are vital.  Often the 
concept of a backstress from subgrain walls is included in the detailed theory.  The opposing 
view considers that subgrain walls are unimportant, that these low energy configurations 
have a smaller influence than the dislocations of the Frank network.  In the past decade it 
appears that the majority of active creep plasticity investigators have favored subgrain-based 
mechanisms.  However, earlier and recent experiments and analysis by the authors of this 
paper have offered clear support for network (non-interface-based) theories, and these are 
briefly discussed below. 



Microstructure Manipulation Experiments:  First, at ambient temperature, it is widely 
acknowledged that hardening occurs by increased dislocation density, ρ, and that the flow 
stress can be related to the dislocation density, ρ, by: 
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Kassner, Miller and Sherby [1982] measured the isolated effect of dislocations on the 
elevated temperature strength of 304 stainless steel (M-type alloy) at a variety of 
temperatures and strain rates. It was later demonstrated that this data can be reasonably 
described by the form of Eqn. (2).  It was also established that high purity aluminum has an 
elevated temperature strength that can be expressed in the classic form of Eqn. (2) as 
discussed in Kassner and Perez-Prado [2000].  Equation (2) may be applicable to other 
metals and alloys as well.  
 
Grain Size Studies:  Second, it has been suggested that subgrains strengthen in a manner 
analogous to grain-boundaries at ambient temperature.  If this is the case, then we would 
expect subgrain strengthening to obey a Hall-Petch relationship.  Studies found that grain 
size strengthening occurs in Al at high temperatures and can be described by the Hall-Petch 
equation.  If the “subgrain strengthening” data is described by a Hall-Petch type equation, 
then the ky values would be roughly 2.5 times larger than for grain-size strengthening. 
Extrapolation of the data of the strength of annealed polycrystals at large and moderate grain 
sizes to small sizes suggests that the subgrain structures are associated with higher strength, 
presumably due to the hardening from the Frank dislocations in the subgrain.   
 
Large Strain Studies:  Third, if subgrain boundaries are important, it would suggest that the 
details (misorientation angle, θ) of the boundaries would affect the creep properties. 
However, this conclusion is not consistent with recent observations regarding geometric-
dynamic recrystallization (GDX) at 0.7 Tm in Al (Kassner and McMahon [1987]).  With 
GDX the original starting grains elongate with large plastic strains.  Although the total 
number of grains does not change, the high misorientation angle (grain boundary) interface 
area increases substantially.  Here up to 1/3 of all subgrain facets originally of 1° 
misorientation, or so, are replaced by HABs of 20-30° misorientation.  Despite this, the flow 
stress does not change. 
 
Internal Stress Studies:  Finally, one of the important suggestions within the creep 
community is that of the internal (or back) stress which, of course, has been suggested for 
plastic deformation in general.  Several investigators advocated the simple case where ‘hard’ 
(high dislocation density walls or cells) and soft (low dislocation density) elastic-perfectly-
plastic regions are compatibly sheared in parallel.  Basically, the analysis shows that each 
component yields at a different stress, and hence, the material is under a heterogeneous 
stress-state with the cell walls (subgrains at high temperatures) having the higher stress.  The 
details of many creep theories rely on high internal stresses.  Some suggest backstresses are, 
perhaps, a factor of 20 higher than the applied stress.  Another concept of backstress is 



related to dislocation configurations.  With this model, the subgrain boundaries that form 
from dislocation reaction bow under the shear stress and this creates relatively high local 
stresses. These are all discussed in Kassner and Perez-Prado [2000]. 
 

Convergent beam electron diffraction (CBED) can probe smaller areas with a 20-100 
nm beam size rather than the entire sample as with x-rays and is potentially more accurate in 
assessing internal stresses in association with dislocation heterogeneities.  Recent CBED 
experiments by the authors on unloaded Al single crystals deformed at a five-power 
temperature/strain-rate regime did not detect the presence of any residual stresses (to within 
8 MPa).  These are illustrated in Fig. 1. 
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Fig. 1  The lattice parameter and corresponding stress determinations based on the CBED in 

single crystal Al deformed for steady-state within the five-power-law creep regime. 
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